About Newton Raphson Method: Newton-Raphson method, also known as the Newton’s Method, is the simplest and fastest approach to find the root of a function. It is an open bracket method and requires only one initial guess. The C program for Newton Raphson method presented here is a programming approach which can be used to find the real roots of not only a nonlinear function, but also those of algebraic and transcendental equations. source :http://www.codewithc.com/c-program-for-newton-raphson-method/
Programme Code:
#include<stdio.h>
#include<math.h>
float f(float x)
{
return x*log10(x) - 1.2;
}
float df (float x)
{
return log10(x) + 0.43429;
}
void main()
{
int itr, maxmitr;
float h, x0, x1, allerr;
printf("\nEnter x0, allowed error and maximum iterations\n");
scanf("%f %f %d", &x0, &allerr, &maxmitr);
for (itr=1; itr<=maxmitr; itr++)
{
h=f(x0)/df(x0);
x1=x0-h;
printf(" At Iteration no. %3d, x = %9.6f\n", itr, x1);
if (fabs(h) < allerr)
{
printf("After %3d iterations, root = %8.6f\n", itr, x1);
return 0;
}
x0=x1;
}
printf(" The required solution does not converge or iterations are insufficient\n");
return 1;
}
Tag:
Newton Raphson Method, Newton Raphson Method with C Programming Code, C Programming , Math Programming using c Language
You May Like Also
Also Like This
Programme Code:
#include<stdio.h>
#include<math.h>
float f(float x)
{
return x*log10(x) - 1.2;
}
float df (float x)
{
return log10(x) + 0.43429;
}
void main()
{
int itr, maxmitr;
float h, x0, x1, allerr;
printf("\nEnter x0, allowed error and maximum iterations\n");
scanf("%f %f %d", &x0, &allerr, &maxmitr);
for (itr=1; itr<=maxmitr; itr++)
{
h=f(x0)/df(x0);
x1=x0-h;
printf(" At Iteration no. %3d, x = %9.6f\n", itr, x1);
if (fabs(h) < allerr)
{
printf("After %3d iterations, root = %8.6f\n", itr, x1);
return 0;
}
x0=x1;
}
printf(" The required solution does not converge or iterations are insufficient\n");
return 1;
}
Tag:
Newton Raphson Method, Newton Raphson Method with C Programming Code, C Programming , Math Programming using c Language
0 Comments